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Abstract
Elastic neutron scattering measurements have been performed under hydrostatic
pressure on single-crystalline MnSi. The scaling between the staggered
moment and the transition temperature of the helical magnetic structure does
not follow predictions from spin-fluctuation theories. For pressures below
p∗ ≈ 12–13 kbar, where the transition is second order, the length of the helix
decreases with increasing temperature. Such a behaviour is not expected for a
ferromagnetic Dzyaloshinsky–Moriya instability. With increasing pressure, the
length of the helix also decreases, but there is a lock-in to an incommensurate
temperature-independent value above p∗, where the phase transition is first
order.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

MnSi is a weakly ferromagnetic itinerant 3d-electron metal that crystallizes in the non-
centrosymmetric cubic space group P213. The lack of inversion symmetry leads to an
antisymmetric Dzyaloshinsky–Moriya (DM) interaction term Dk · (S1 × S2) originating in
the spin–orbit coupling [1–4]. As a consequence, a long-wavelength (∼180 Å) helical spin-
density wave (SDW) is formed below TC = 29.5 K [5]. Weak crystal-field anisotropies fix
the propagation vector k to the cubic [111] axis (in zero magnetic field). The propagation
vector is k = (δ, δ, δ), with δ ≈ 0.015 rlu at zero pressure and temperature. The ordered
magnetic moment M is perpendicular to k, and its low-T magnitude of 0.4 µB is much smaller
than the high-T effective moment. The chirality of the magnetic structure is single-handed, as
determined from polarized neutron scattering [6–8].

With increasing pressure, the magnetic transition temperature decreases and the magnetic
order finally disappears at a critical pressure of pc = 14.7 ± 0.1 kbar in transport
measurements [9–11]. Below p∗ ≈ 12–13 kbar, the transition is second order, while above p∗,
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Table 1. Experimental conditions. Fa is the applied force at room temperature and pa the
corresponding nominal pressure; pobs is the pressure at low temperatures obtained from the
magnetic transition temperature TC. The material used for the holder is also given.

Fa pa(300 K) pobs(2 K) TC

(104 N) (kbar) (kbar) (K) Holder

0 0 0 29.24 (5) Teflon
2.2 12.3 6.6 19.59 (2) Teflon
2.9 16.2 11.2 12.14 (6) Teflon
3.3 18.5 12.0 10.55 (2) Teflon
3.9 21.8 13.2 7.89 (1) Teflon
4.5 25.2 14.2 3.59 (2) Teflon
3.3 18.5 13.1 7.95 (3) Pb

it is weakly first order [12]. Close to the quantum phase transition (QPT) at pc, the temperature-
dependent part of the electrical resistivity shows deviations from Fermi liquid behaviour, with
�ρ = AT 3/2 over a wide temperature range [10, 13–16].

NMR measurements suggest that the standard scaling relation,obtained in spin-fluctuation
theories [17], between the transition temperature Tc and the magnitude of the ordered moment
M as a function of pressure,

Tc(p) ∝ Mα(p) (1)

with α = 3/2, is not observed [18, 19]. The aim of the present work was to use a more
direct method, neutron elastic scattering investigation, to measure the sublattice magnetization
of a high-quality single crystal of MnSi under hydrostatic pressure, and to verify the scaling
relation, equation (1), for pressures up to pc.

2. Experimental aspects

2.1. Sample and sample environment

High-quality single crystals were pulled from a stoichiometric melt of high-purity (>99.995%)

elements, using radio-frequency heating and a cold copper crucible. The manganese was
acid etched before the synthesis. An x-ray powder diffraction study was performed on the
polycrystalline sample before the growth and Laue diffraction on the pulled crystal. Scanning
electron microscope microanalysis and backscattered electron images were used to study the
phase purity. None of those characterizations revealed deviations from known crystallographic
parameters or the presence of other metallurgical phases. The mosaicity of the samples, which
were not annealed, was 0.2◦. A crystal was cut using electroerosion into a cylinder of diameter
4 mm and height 7 mm, with the [11̄0] axis along the cylinder axis, which was mounted
vertical.

One of the main problems with measurements of MnSi under pressure is its extreme
sensitivity to deviations from hydrostatic conditions, which are always present in clamp cells.
In order to improve the hydrostaticity, the sample was not glued to any support but suspended
in the liquid pressure transmitter consisting of a 50–50% mixture of FC75/FC84 Fluorinert
inside a Teflon or lead holder of inner diameter 4.4 mm. The holder was mounted in a Ni–
Cr–Al clamp cell from Troitsk, with the inner (outer) diameter of 4.7 (12.7) mm. Ni–Cr–Al
pistons were used, except at the highest pressure where non-magnetic tungsten carbide pistons
were used. Details are given in table 1. A magnetic field in the horizontal scattering plane was
used to induce a controlled magnetic domain population in the sample, which is particularly
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Figure 1. Temperature dependence of the peak height of the magnetic satellite at Q = (110)+k2 =
(1 + δ, 1 + δ,−δ) and H = 0.1 T for different pressures p, normalized to the nuclear Bragg peak
intensity. The curves are guides to the eye.

important at high pressures. The crystallographic [111̄] axis was parallel to the magnetic field
with high precision, better than 0.2◦.

Traditionally, the magnetic structure of MnSi has been studied by means of small-angle
neutron scattering, due to the smallness of the magnetic propagation vector |k|. However,
the high background from pressure cells in the forward direction makes this technique
unfavourable. We therefore chose to study the magnetic structure close to the (110) nuclear
Bragg peak, using the IN12 cold-neutron triple-axis spectrometer at the high-flux reactor of
the Institut Laue-Langevin (Grenoble, France), operated in a W configuration with a vertically
focusing PG(002) monochromator. A flat PG(002) analyser set at elastic energy transfer was
used to reduce the background. A liquid nitrogen cooled Be filter was used in the incident beam
to suppress second-order contamination. The required Q resolution was obtained by using
tight collimation (20′ throughout) and cold neutrons. The neutron wavevector ki = 1.38 Å−1

was chosen so that the incident and scattered beam did not hit the pillars of the magnet, still
allowing the field to be along the [111̄] direction. The (110) nuclear Bragg peak was then
observed at a scattering angle of 90◦.

2.2. Pressure determination

The use of a triple-axis spectrometer and a horizontal magnet with limited angular access
precluded the use of standard methods for determining the pressure in neutron scattering
experiments, such as measuring the lattice parameter of a NaCl crystal. Instead, we determined
the transition temperature TC for the magnetic order and used the pressure dependence TC(p)

known from the literature [18] to determine the pressure p. The thermalization time constant
of the sample was carefully determined by monitoring the magnetic Bragg peak intensity after
a temperature change in a region where the moment varies rapidly with T . Due to the small
size of the pressure cell used, the thermalization of the sample was reached within 15 min
in the actual temperature range. All measurements of M(T ) were made by increasing the
temperature; no search for hysteresis was made.

Examples of the temperature dependence of the magnetic peak intensity, IM(T ) ∝
M2(T ) + B , where B is the background from the pressure cell and the tail of the nuclear
Bragg peak at (110), are shown in figure 1. From these data, TC(p) and hence p could be
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Figure 2. ((a)–(c)) Field dependence of the magnetic Bragg peak intensity at T = 2 K for a
magnetic field applied along the [111̄] direction, i.e. along k2. (a) p = 0 kbar, domain k2 for
increasing (+) and decreasing (−) field. (b) p = 6.6 kbar, domains k1 and k2 and their sum for
increasing (+) field. (c) p = 11.2 kbar, domain k2 for increasing (+) and decreasing (−) field, and
domain k1 for zero-field cooling. (d) Pressure dependence of the low-temperature lattice parameter
a(p) normalized to a(0). Symbols are experimental data and lines are guides to the eye.

accurately determined. The corresponding values are given in table 1. The difference between
the applied and the measured pressure is partly due to the freezing of the pressure transmitter,
estimated to 2–2.5 kbar (the cell was slowly cooled to minimize the formation of pressure
gradients), and partly due to friction losses in the pressure cell. The latter is approximately
25 ± 7% of the applied pressure, a value typical for this kind of cell.

The lattice parameter of MnSi as a function of pressure, a(p), determined from
longitudinal scans of the (110) nuclear Bragg peak, is shown in figure 2(d). The use of a
triple-axis spectrometer does not allow a precise determination of the absolute value of the
lattice parameter (a ≈ 4.558 Å at zero pressure), but the relative pressure dependence can
be determined accurately taken appropriate precautions for the centring of the crystal. For
p < 13 kbar, the linear pressure dependence confirms the pressure determination based on
the TC(p) discussed above. The change in slope at 13 kbar could be related to the transition
becoming first order. This would give a value of p∗ of 13 kbar, in fair agreement with values
quoted in the literature [10, 11].

2.3. Domain population

The magnetic moment at a position r along a helix can be expressed as

M(r) = M[û cos(k · r) + v̂ sin(k · r)], (2)

where û and v̂ are two orthogonal unit vectors perpendicular to k. In MnSi, where k is along
a threefold axis of the cubic structure, there are four equivalent magnetic propagation vectors,
k1 = (δ, δ, δ), k2 = (δ, δ,−δ), k3 = (δ,−δ, δ), and k4 = (δ,−δ,−δ), each corresponding
to a so-called K domain. Because of the lack of inversion symmetry, the chirality is single
handed, and the same helix is observed at +k and −k (there are thus no chiral domains).
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With unpolarized neutrons, there are thus eight magnetic satellite peaks around each nuclear
Bragg peak, corresponding to ±k j with j = 1, . . . , 4. For an unstrained sample, one would
expect to see equal populations of the four K domains. This is observed experimentally for
our sample. However, the application of pressure may induce an unequal domain population,
due to deviations from hydrostaticity. This effect is particularly severe in MnSi. We note
in passing that strong deviations from hydrostaticity in some pressure cells (not used in this
work) may even change the direction of the propagation vector. In order to determine the
sublattice magnetization under pressure, one would thus need to measure all four domains.
Since only two of the four domains are observable in a given scattering plane, this poses
problems in neutron scattering experiments. We therefore used a magnetic field parallel to the
crystallographic [111̄] axis to favour the population of the k2 domain.

The application of a magnetic field H has three effects in MnSi, in order of increasing
field: domain repopulation, canting of the moment, and reorientation of the propagation vector
parallel to H [5]. The field applied in the present work is too weak to induce the third effect.
Figures 2(a)–(c) show the domain repopulation with increasing field in a zero-field cooled state:
the intensity increases initially in the k2 domain and decreases in the k1 domain. At higher
fields, the intensity decreases due to the canting of the moments. As the field is decreased
again, the intensity increases as the canting disappears, while the domain population remains
unchanged. At higher pressures, a higher field is required to populate the k2 domain, since the
pressure gradients compete with the effect of the field. Also, the k2 domain has a tendency to
depopulate at zero field as a function of time, and hence most measurements were done at a
field of 0.1 T. This maintains the domain population while the effect of canting on the observed
intensity is negligible. By tilting the cryostat, it was possible to verify that the population of
the out-of-plane domains k3 and k4 vanished along with k1 in an applied field along the [111̄]
direction. We also found that the intensity of the satellite peak at k2 was always equal to that
at −k2, as expected for unpolarized neutrons, since the same domain is observed at ±k2 for a
single-handed helix.

2.4. Methodology

In order to determine the sublattice magnetization, scans through the magnetic satellite peaks
were made at different temperatures and pressures. Transverse scans, i.e. scans with the
scan direction perpendicular to the wavevector Q = τ + k2, have the advantage of not being
contaminated by the nearby nuclear Bragg peak at τ = (110). Longitudinal scans, on the other
hand, are necessary for determining the pressure and temperature dependence of the length
(or δ) of the propagation vector. The tail of the nuclear Bragg peak was straightforwardly
removed from these scans, either by taking off a sloping background or by subtracting the
same scans taken above the transition temperature. Longitudinal and transverse scans give the
same results for the magnitude of the moment and we use the average of the two scan types to
improve the quality of the data. Examples of scans are shown in figure 3. No broadening of
the magnetic satellite peaks was observed within the instrumental resolution, i.e. the magnetic
order remains long range at all T and p. Within the experimental precision, the propagation
vector k2 = (δx , δy,−δz) does not turn with pressure or temperature, i.e. δx = δy = δz = δ.
Only the magnitude of δ changes with temperature or pressure. The intensity of the magnetic
scattering was normalized to the integrated intensity of scans of the nuclear Bragg peak at (110).
Due to the small compressibility of MnSi (see figure 2(d)), we assume that the magnetic form
factor does not vary significantly with pressure at the Q value studied. The statistical errors
(shown in the figures) are smaller than errors in the normalization (due to inaccuracies in the
crystal alignment) and in the pressure determination.
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Figure 3. ((a), (b)) Longitudinal scans of the k2 domain at different temperatures and H = 0.1 T.
Note that the peak position depends on temperature for p < p∗ (a) while it is constant for
p > p∗ (b). (c) Transverse scans of the k2 domain above p∗ for temperatures below and above
TC, at H = 0.1 T. The lines are fits to a Gaussian plus a sloping background.

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

Neutron data
extrapolation
Thessieu98
Thessieu99
Koyama00
Yu04

M
2 (p

)/
M

2 (0
)

p  (kbar)

MnSi

0.01

0.10

1.00

0.4 0.5 0.6 0.7 0.8 0.9 1

T
C
(p

)/
T

C
(0

)

M(p)/M(0)

MnSia b

Figure 4. (a) Pressure dependence of the intensity IM ∝ M2(p) (symbols) of the magnetic satellite
peaks of MnSi at T = 2 K and H = 0.1 T, normalized to the zero-pressure value. The extrapolation
to zero intensity is shown by the solid curve. The broken curves show the magnetization squared,
M2, obtained from the NMR frequency by Thessieu et al [18, 19] and Yu et al [21] as well as the bulk
magnetization measurements of Koyama et al [20]. (b) Scaling behaviour (on a double-logarithmic
scale) of the reduced transition temperature TC(p)/TC(0) with respect to the reduced ordered
magnetic moment M(p)/M(0) with pressure as an implicit parameter. Symbols are neutron data.
The solid curve shows NMR data [19], the dashed lines show the spin-fluctuation-theory prediction
for an itinerant ferromagnet (antiferromagnet) with α = 3/2 (α = 4/3) in equation (1), and the
dotted line is a fit of equation (1) yielding α ≈ 4.8.

3. Results

3.1. Moment magnitude

The pressure dependence of the magnetic intensity (∝M2) at H = 0.1 T and extrapolated to
zero temperature is shown in figure 4(a). The data are in good agreement with M2(p) extracted
from magnetization and NMR measurements [18–21] up to p∗ ≈ 12–13 kbar and also with
µSR measurements under pressure [22]. Above p∗, our direct measurements of the staggered
magnetization M using neutron scattering show a substantially reduced moment. Although
there is some ambiguity as regards how to extrapolate the moment to zero temperature at the
highest pressure, p = 14.2 kbar, chiefly since the lowest temperature measured is quite close
to TC, it is nevertheless clear that the moment is reduced above p∗. The ‘missing’ moment
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might either be located at other points in the Brillouin zone (see e.g. [16] for the situation above
pc) or be dynamic in origin. Inhomogeneity is an alternative explanation, which is discussed
in section 4. We did not perform any measurements above pc. The extrapolated critical
pressure is pc = 15.4 (2) kbar, in fair agreement with pc = 14.7 (1) kbar from macroscopic
measurements [10, 11].

Figure 4(b) shows the reduced transition temperature TC(p)/TC(p =0) as a function of the
reduced magnetic moment M(p)/M(p =0) extrapolated to zero temperature. Pressure is here
an implicit variable, which has the advantage that possible errors in the pressure determination
play no role. The data clearly do not fulfil the simple scaling relation equation (1) with
α = 3/2, expected for a weak itinerant ferromagnet [17]. For pressures below p∗, i.e. all
points except those with M(p)/M(0) less than 0.6, a coefficient α ≈ 4.8 is found, far beyond
any expected value (for weakly antiferromagnetic itinerant systems,one expects α ≈ 4/3 [23]).
The magnetization and NMR data of Thessieu et al [18, 19] are (again) in good agreement
with ours for p < p∗, but not above.

3.2. Length of the helix

For a propagation vector k = (δ, δ, δ), the length of the helix is 1/δ (in units of interplanar
distances along the [111] direction). The low-temperature value of δ clearly increases with
pressure, as shown in figure 5(b). It goes from δ = 0.015 05 (2) rlu at zero pressure to
δ = 0.018 91 (4) rlu at p = 14.2 kbar. This means that the system becomes less ferromagnetic
(shorter length of the helix) with increasing pressure.

Below p∗, where the transition is second order, δ increases with temperature (see
figure 5(a)). Although it is difficult to measure δ with precision very close to the transition
temperature TC (due to the weak magnetic intensity), there is no sign that δ diverges at TC.
Instead, it seems that the second-order transition occurs exactly when δ reaches the ‘magical’
value of 0.018 91 rlu (see figure 5(a)). Above p∗, where the transition is first order, δ is
temperature independent. Hence, the change from a second-to a first-order transition is
accompanied by a lock-in of the propagation vector. It thus seems that MnSi cannot support a
helical structure with δ longer than 0.018 91 rlu, either as a function of pressure or as a function
of temperature. This is one of the major and most puzzling findings in this work.
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4. Discussion

The present work was motivated by the 29Si NMR measurements of Thessieu et al [18, 19],
which suggested that (i) the scaling relation of equation (1) was not fulfilled and (ii) the NMR
signal persisted, albeit substantially broadened, above the critical pressure pc. 29Si NMR
measurements probe the local magnetic field at the Si site induced by the spin polarization
of the Mn 3d electrons. Although the local magnetization inferred from NMR data has
the same pressure dependence as the saturated magnetic moment from bulk magnetization
measurements [18, 19], it is still important to verify these results by a more direct measurement
of the sublattice magnetization, such as a neutron scattering one. Our neutron data confirms
the violation of the scaling relation of equation (1); see figure 4. Figure 4(a) shows that the
magnetic intensity extrapolates to zero close to pc, which would imply the absence of long-
range magnetic order above pc. This, at first, seems in contradiction with the NMR data. A
possible explanation is that the NMR signal above pc is related to short-range correlations
or ‘local order’ observed by means of neutron scattering above pc [16]. Indeed, the NMR
signal observed above pc is substantially broadened, which could be expected for short-range
correlations. More recent 29Si NMR measurements by Yu et al [21] also show a broadened
resonance signal above pc, in qualitative agreement with earlier work [18, 19]. In addition,
they found a sudden decrease of the total spectral intensity at p > p∗, which was interpreted
as due to an inhomogeneous magnetic phase. Since the transition above p∗ is first order,
internal strains in the small-grained powder sample used or slightly non-hydrostatic pressure
conditions can easily give rise to such inhomogeneities due to phase separation. This effect,
if present in our single-crystalline sample, could explain the sudden drop we observe in the
magnetic intensity near p∗ (cf figure 4(a)), since the neutron intensity is proportional to the
product of the ordered moment squared and the volume of the part of the sample contributing
to the magnetic intensity.

In addition to well-defined magnetic Bragg peaks below pc at satellite positions of
type k = (δ, δ, δ), Pfleiderer et al [16] also observed broad features above pc at positions
corresponding to another wavevector, κ = (ε, ε, 0), where ε is of the same order as δ. This
is the same position as where the critical scattering at zero pressure is maximal [24]. In our
measurements, we did not investigate this position. However, no broad features were observed
at (δ, δ, δ)-type positions. In fact, the magnetic Bragg peaks at k = (δ, δ, δ) are sharp all the
way up to Tc(p) at all pressures p < pc. The non-observation of diffuse scattering above the
transition temperature could be related to the lower sensitivity in our measurements due to
higher background from the pressure cell. In fact, ring-like diffuse scattering resembling the
features observed by Pfleiderer et al [16] has been observed at zero pressure near the transition
temperature [25].

The crossover from a second-order to a weakly first-order transition observed in magnetic
susceptibility measurements at a pressure of p∗ = 12–13 kbar can be understood in the context
of non-critical soft modes characteristic of an itinerant electron system at low temperature.
In fact, the phase transition for both a weak itinerant ferromagnet and a weak itinerant
helimagnet can be shown theoretically to become first order if the transition temperature is low
enough [26, 27]. In MnSi, this crossover does indeed occur at low temperatures: TC ≈ 12 K
at p∗. Renormalization group theory also predicts a first-order transition in MnSi [1]. In our
measurements, a strong decrease in the ordered magnetic moment is observed at p∗, which is
consistent with a change from second to first order. However, the temperature dependence of
the moment (see figure 1) is the same below and above p∗ within the experimental precision.

Theoretically, the inverse length of the helix, δ, is determined by a balance between the
ferromagnetic interaction and the DM interaction, Dk·(S1×S2) [1–4]. We find experimentally
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that δ depends on temperature below p∗. This is unexpected, since the strength of the DM
interaction term, D, is temperature independent. Since MnSi is an itinerant magnet, the most
likely scenario is that the spin fluctuations modify the ferromagnetic coupling and in that
way introduce a temperature-dependent δ. However, it is difficult to understand in a spin-
fluctuation scenario how δ could become temperature independent above p∗, where the phase
transition is first order. The length of the helix at low temperatures decreases from 1/δ = 66.4
(0.1) to 52.9(1) interplanar distances along the [111] axis as the pressure goes from 0 to
14.2 kbar. While the accuracy in the determination of the length of the helix is not sufficient
to allow us to reach a conclusion on whether the ‘lock-in’ value is strictly commensurate or
incommensurate, it is energetically rather insignificant whether the helix is 52 or 53 interplanar
distances long. This can also be seen from the pitch angle of 6.8◦, which does not correspond
to any particular symmetry of the crystal. In any case, the incommensurate to commensurate
transition expected in general for helical structures should not occur in MnSi, since the absence
of inversion symmetry prevents the occurrence of a Lifshitz point [28].

In conclusion, our neutron scattering study of the helimagnetic structure of MnSi
under highly hydrostatic pressure conditions shows that the scaling between the sublattice
magnetization and the transition temperature does not follow predictions from spin-fluctuation
theories. We also find that the length of the helix is temperature dependent below p∗, in
qualitative agreement with zero-pressure work [25], but locks in at a temperature-independent,
probably incommensurate, value above p∗. The temperature and pressure dependence of the
helix is such that its wavelength is never shorter than 140 Å.
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